DESeq2
Differential gene expression analysis based on the negative binomial distribution
Bioconductor version: Development (2.12)
Estimate variance-mean dependence in count data from high-throughput sequencing assays and test for differential expression based on a model using the negative binomial distribution
Author: Michael Love (MPIMG Berlin), Simon Anders (EMBL Heidelberg)
Maintainer: Michael Love <michaelisaiahlove at gmail.com>
To install this package, start R and enter:
source("http://bioconductor.org/biocLite.R")
biocLite("DESeq2")To cite this package in a publication, start R and enter:
citation("DESeq2")Documentation
| R Script | Analyzing RNA-Seq data with the "DESeq2" package | |
| | vst.pdf | |
| Reference Manual |
Details
| biocViews | ChIPseq, DifferentialExpression, HighThroughputSequencing, RNAseq, SAGE, Software |
| Version | 0.99.18 |
| In Bioconductor since | BioC 2.12 (R-2.16) |
| License | GPL (>= 3) |
| Depends | GenomicRanges, IRanges, Biobase, lattice, Rcpp (>= 0.10.1), RcppArmadillo (>= 0.3.4.4) |
| Imports | GenomicRanges, IRanges, Biobase, locfit, genefilter, methods, RColorBrewer, lattice |
| Suggests | parathyroidSE, pasilla(>= 0.2.10), vsn, gplots |
| System Requirements | |
| URL | |
| Depends On Me | |
| Imports Me | |
| Suggests Me |
Package Downloads
| Package Source | DESeq2_0.99.18.tar.gz |
| Windows Binary | DESeq2_0.99.18.zip (32- & 64-bit) |
| MacOS 10.5 (Leopard) binary | DESeq2_0.99.18.tgz |

0 comments:
Post a Comment