The Bank Where Doctors Can Stash Your Genome

Dnasequence

 Note:-This article originally published at MIT Technology Review here


Author of this  article

Susan Young








Read more  <<about original link of  this article>>
Read more <<about author>>

Genomic sequencing might be more common in medicine if doctors had a simple way to send for the test and keep track of the data.
That’s the hope of Coriell Life Sciences in Camden, New Jersey, a startup that grew out of a partnership between the Coriell Institute for Medical Research and IBM. The company wants to facilitate the process of ordering, storing, and interpreting whole-genome-sequence data for doctors. The company launched in January and is now working with different health-care providers to set up its service. “The intent is that the doctor would order a test like any other diagnostic test they order today,” says Scott Megill, president of Coriell Life Sciences. The company would facilitate sequencing the patient’s DNA (through existing sequencing companies such as Illumina or Ion Torrent), store it in its so-called gene vault, and act as the middleman between doctors and companies that offer interpretation services. Finally, “we will return the genetic result in the human readable form back to the electronic medical record so the doctor can read it and interpret it for the patient,” says Megill. 
 “You need a robust software infrastructure for storing, analyzing, and presenting information,” says Jon Hirsch, who founded Syapse, a California-based company developing software to analyze biological data sets for diagnosing patients. “Until that gets built, you can generate all the data you want, but it’s not going to have any impact outside the few major centers of genomics medicine,” he says.
The company will use a board of scientific advisors to guide them to the best interpretation programs available. “No one company is in position to interpret the entire genome for its meaning,” says Michael Christman, CEO of the Coriell Institute for Medical Research. “But by having one’s sequence in the gene vault, then the physician will be able to order interpretative engines, analogous to apps for the iPhone,” he says. Doctors could order an app to analyze a patient’s genome for DNA variants linked to poor drug response at one point, and later on, order another for variants linked to heart disease.
The cloud-based workflow could help doctors in different locations take advantage of expert interpretations anywhere, says Christman. “This would allow a doctor who’s at a community clinic in Tulsa, Oklahoma, order an interpretation of breast cancer sequences derived at Sloan Kettering,” he says.
But while the cloud offers many conveniences, it carries some potential risks. “I am a bit concerned if we really start to outsource data to the cloud without any regulation,” says Emiliano De Cristofaro, a cryptography scientist with Xerox’s PARC who is developing a genomic data storage and sharing platform. “We must not forget that the sensitivity of genomic information is quite unprecedented,” he says. “The human genome is not only a unique identifier but also contains things about ethnic heritage, predisposition to certain diseases including mental disorders, and many other traits.” Data leaks happen all the time, says Cristofaro, and while you can change your password after a security break, “there’s no way to revoke your genome.”
Keeping the genomic data secure is a key component and is the reason the group began a relationship with IBM, says Megill. The data would be stored at the company’s headquarters and would be available only to limited users—doctors and companies that offer diagnostic or other medical interpretation of the genome, he says.
If a patient changes her health-care provider, the data will remain available for her next physician. Storing the data will be free, says Christman.